床面衝突噴流を用いた準置換換気空調方式に関する研究 (その10)天井高が乱流熱拡散性状に及ぼす影響

4. 環境工学 - 13. 空気流動応用 - b. 室内気流 衝突噴流 置換換気 温度成層 数値実験 ブロックモデル

1. はじめに

本研究では床面への衝突噴流による空調を行う準置 換換気方式¹⁾(Impinging Jet Ventilation 方式、以降 IJV 方式)を対象とした室内鉛直温度分布の簡易予測手法 の提案を目的としている。IJV 方式は室内で温度成層 を形成する空調方式であり、置換換気と比較して室下 部の居住域が適度に混合しやすいことや水平方向の温 度分布が生じ難いなどの利点が考えられる。しかし設 計段階でその鉛直温度分布を実用的な精度で簡易に予 測する手法は確立されていない。

既報²⁾では実験により精度検証を行った CFD 解析 手法を用いて吹出し風速に関する数値実験を行い、鉛 直温度分布に与える影響を明らかにした。また、IJV 方式に適した乱流熱拡散係数(*a*_t)を与えたブロック モデルを提案し、設計条件から*a*_tを予測する手法の検 討を行った。ここでは*a*_tを室の上部と下部の2領域に 分けて与える手法を提案し、その妥当性を示した。前 報³⁾では熱負荷配置条件をパラメータに加えて IJV 方 式の温度分布を再現し得る*a*_tを同定するとともに、2 種の Ar 数と*a*,の関係を示した。

前述の検討は一般的な執務室程度の天井高(2.7 m)の室を対象とした検討であったが、温度成層を形成す

正会員 〇西海利哉^{*1} 同 小林知広^{*2} 同 梅宮典子^{*3} 同 杉田雄希^{*4}

る IJV 方式は高熱負荷かつ大空間でより効果的と考え られる。そのため、本報ではより高い天井高条件(5.4 m)の IJV 方式の室を対象として CFD 解析を行い、そ の解析結果に基づいてブロックモデルで室内鉛直温度 分布を適切に再現し得る乱流熱拡散係数の与え方につ いて検討を行った結果を報告する。

2. CFD 解析を用いた鉛直温度分布の予測

2.1 解析概要

既報²⁾と同様に IJV 吹出面を床上 600 mm、夏期冷 房時を想定した熱負荷として室中央に発熱量 2.0 kW で一辺 800 mm の立方体形状の発熱体を設置した平面 寸法 9.0 m×5.0 mの室を対象に CFD 解析を行った。 既報では天井高 2.7 mとしたが、前述の通り IJV 方式 は高熱負荷の大空間で特に有効と考え、本報では天井 高 5.4 m (図 1) で解析を行う。解析パラメータとし て吹出口数を1個(Case1)、2個(Case2)、4個(Case3)、 6個(Case4) と変更した4条件を設定し、総給気風 量は 600 m³/h、給気温度は 20℃として投入熱量が等し い条件とした。つまり、各条件間で給気運動量のみが 異なる条件設定を意図した。排気口は 300 mm×300 mm のものを天井面に4箇所設置した。表1に CFD

A Study on Semi-Displacement Ventilation using Radial Wall Jet (Part 10) Effect of Ceiling Height on Turbulent Thermal Diffusion

NISHIUMI Toshiya, KOBAYASHI Tomohiro, UMEMIYA Noriko, SUGITA Kazuki

解析の条件、図2に各条件の平面図を示す。計算負荷の軽減のために室の半分のみを再現し、対象面はFree Slip境界として解析を行った。壁面の熱的境界条件は 既報²⁾及び前報³⁾と同様外部温度と壁面の熱抵抗を与 えた上で放射連成解析を行った。流入境界面の位置は 吹出口下端とし、境界条件には、各条件ごとに総給気 量 600 m³/h を吹出面積の合計で除した風速および給気 温度 20℃を与えた。なお、各ディフューザーの吹出面 積は統一した。Case1 のメッシュレイアウトを例とし て図3に示す。

2.2 CFD 解析により得られた鉛直温度分布

CFD解析により得られた水平面平均温度の鉛直分布 を図4に示す。どの条件においても室内で明確な温度 成層が形成されており、室上部では比較的均一な温度 分布となり条件間で大きな差異は見られない。一方、 室下部居住域温度は給気風速が低下するほど低くなる 結果となった。よって投入熱量が等しくても給気風量 の分配による給気風速の違いによって居住域温度は変 わると言え、設計段階で簡易的に予測する手法が必要 と言える。本研究ではここで得られた水平面平均温度 の鉛直分布を真値とみなし、次章でブロックモデルに よりこの温度分布を簡易に予測するための乱流熱拡散 係数 *a*, の適切な与え方に関する検討を行う。

3. ブロックモデルの概要

本研究のブロックモデルでは図5に示すように対象 とする室内空間を鉛直方向に複数のブロックに分割し て鉛直温度分布を簡易に予測する。本報では1ブロッ クの高さを270 mm として鉛直方向に20分割して計算 を行う。既報²⁾で示したように、室ブロック・壁面近 傍ブロック・プルームブロックの3種を設定し、各ブ ロック間の移流・乱流熱拡散ならびに壁面での熱伝達 による熱量および、移流による風量収支を解くことで 最終的に室ブロック温度を求める。室上部からブロッ ク番号(*I*)を1~20とし、IJVによる給気は最下部 ブロック(20)、排気は最上部ブロック(1)から行う。 また、発熱量は最下部プルームブロックに全て与えた。

計算手順としてはまず各初期条件を与え、戸河里ら 4) の手法に基づき各壁面ブロック(K)において壁面温 度と室ブロック空気温度の差に応じて壁面近傍ブロッ クでの下降流の風量を算出する。次に発熱体(L)か ら生じる熱プルームの流量を予測式⁵⁾に基づき算出し てプルームブロックの風量収支計算を行い、プルーム が室ブロックから誘引する風量を算出する。これをも とにブロック温度およびプルーム温度からプルームブ ロックの熱量収支を計算する。その後、壁面流および 熱プルームによる誘引風量から各ブロックの上下間の 風量収支と熱量収支を計算し、この計算を繰り返す。 計算の概要図を図6に示すとともに計算式を表2に まとめる。本研究では上下の室ブロック間の乱流熱拡 散を考慮するが、この計算に用いる熱移動係数 C_b[W/ $(m^2 \cdot K)$] は乱流熱拡散係数 $a_t [m^2/s]$ から算出し、この a_t が最終的に計算される温度分布の結果に大きな影響を 与える。そのため、CFD 解析による室内鉛直温度分 布の結果を真値とし、鉛直温度分布の予測結果が真値 と最もよく一致する a, の与え方の検討を行う。

4. 乱流熱拡散係数の同定

前述の通り、本研究では室を鉛直方向に20分割し た計算を行う。既報²⁾及び前報³⁾では室の下部と上部 で領域を2つに区別し、同領域内の室ブロック境界で は同一の a, を与えてその妥当性を示したが、天井高が 異なる条件でもこの与え方が適切かどうかを確認する ための検討を行う。図5に示すように室上部15ブロッ クの領域内の境界面で均一に与えた乱流熱拡散係数の 値を at upper、室下部 5 ブロックの領域内境界で均一に 与えた値を $a_{t lower}$ とした条件(2領域条件)と、室上 部 10 ブロックの境界を at upper、中央部 5 ブロックの境 界を $a_{t middle}$ 、室下部5ブロックの境界を $a_{t lower}$ とした 条件(3領域条件)の2条件をCase1,2,3,4それぞれ に適用し、計8条件で鉛温度分布が CFD 解析結果と 最もよく一致する a, を最小二乗法により有効数字二 桁で同定した。同定結果とその値を用いて計算した鉛 直温度分布の予測結果を図7に示す。予測結果は3領 域条件の方が2領域条件より多少精度は上がるが、2 領域条件と比較して特筆すべき精度の向上は見られな

	表 2 ブロ	ックモデル計算式					
Airflow rate balance of wall downflow $V_{-}(I_{-}K) - V_{-}(I_{-}K) + V_{-}(I_{-}-1_{-}K) - V_{-}(I_{-}K) = 0$		Airflow rate and heat balance of room block $\int_{-\infty}^{\infty} \left\{ V_{i}\left(x, y \right) + V_{i}\left(x, y \right) + V_{i}\left(y, y \right) + V_{i}\left(x, y \right) + V_{i}\left(y, y \right) + V_{i}$					
Airflow rate of plume		$\sum_{K=1}^{n} \langle V_{in}(I,K) - V_{cout}(I,K) \rangle + V_{xa}(I) - V_{ca}(I) - \sum_{L=1}^{n} V_{pin}(I,L) + V_{c}(I+1) - V_{c}(I) = 0$					
$V_p = 0.005 \times W^{\frac{1}{3}} \times (h + h_0)^{\frac{5}{3}}$		$\begin{bmatrix} \text{[Top block]} \\ \sum_{i=1}^{m} C_{i} o_{V} (I, K) [T_{i}(I, K) - T(I)] + \sum_{i=1}^{n} C_{i} o_{V} (I, L) [T_{i}(I, L) - T(I)] + C_{i} o_{V} (I + 1) [T(I + 1) - T(I)] \end{bmatrix}$					
Airflow rate and heat balance of plume block $V_p(I+1,L)-V_p(I,L)+V_{pin}(I,L)=0$		$\sum_{k=1}^{n} \sum_{p \neq r-m} (s, r) (r, r) (r) (r) (r) (r) (r) (r) (r) (r) (r) $					
$\begin{bmatrix} \text{Top block} \end{bmatrix}$ $\sum_{L=1}^{n} C_{\rho} \rho V_{\rho} (I+1,L) \{ T_{\rho} (I+1,L) - T_{\rho} (I,L) \} + \sum_{L=1}^{n} C_{hp} H_{b} B_{\rho} (I,L) \{ T(I) - T_{\rho} (I,L) \} = 0$ $\begin{bmatrix} \text{Medium block} \end{bmatrix}$ $\sum_{L=1}^{n} C_{\rho} \rho V_{\rho} (I+1,L) \{ T_{\rho} (I+1,L) - T_{\rho} (I,L) \} + \sum_{L=1}^{n} C_{\rho} \rho V_{pin} (I,L) \{ T(I) - T_{\rho} (I,L) \}$ $+ \sum_{L=1}^{n} C_{hp} H_{b} B_{\rho} (I,L) \{ T(I) - T_{\rho} (I,L) \} = 0$ $\begin{bmatrix} \text{Bottom block} \end{bmatrix}$ $\sum_{L=1}^{n} C_{\rho} \rho V_{pin} (I,L) \{ T(I) - T_{\rho} (I,L) \} + W + \sum_{L=1}^{n} C_{hp} H_{b} B_{\rho} (I,L) \{ T(I) - T_{\rho} (I,L) \} = 0$		$\begin{split} & \left[\text{Medium block} \right] \\ & \sum_{k=1}^{m} C_{p} \rho V_{in}(I,K) [T_{m}(I,K) - T(I)] + \underline{C_{p} \rho V_{c}(I+1) [T(I+1) - T(I)]} - \underline{C_{p} \rho V_{c}(I) [T(I-1) - T(I)]} \\ & + C_{b}(I) A_{b} \{T(I-1) - T(I)\} + C_{b}(I+1) A_{b} \{T(I+1) - T(I)\} + \sum_{L=1}^{n} C_{bp} H_{b} B_{p}(I,L) [T_{p}(I,L) - T(I)] = 0 \\ & \left[\text{Bottom block} \right] \\ & \sum_{K=1}^{m} C_{p} \rho V_{in}(I,K) [T_{m}(I,K) - T(I)] + C_{p} \rho V_{ss}(I) [T_{ss}(I) - T(I)] - \underline{C_{p} \rho V_{c}(I) [T(I-1) - T(I)]} \\ & + C_{b}(I) A_{b} \{T(I-1) - T(I)\} + a_{c} A_{b} [T_{j} - T(I)] + \sum_{L=1}^{n} C_{bp} H_{b} B_{p}(I,L) [T_{p}(I,L) - T(I)] = 0 \\ & \left[\text{Heat transer coefficient by turbulent diffusion} \right] \end{split}$					
				$C_b = a_i \times C_p \rho / H_b \qquad C_{bp} = 1.0$ * The term with underbar is 0 if V_c indicates the outflow from the block.			
				Nomenclature V_p : Air flow rate of plume [m ³ /s]	V_{sa} : Supply air flow rate [m ³ /s]	T_{sa} : Supply air temperature [*C]	A_b : Area of boundary surface of block [m ²]
				V_{pin} : Entrainment air flow rate from block [m ³ /s]	V_{ea} : Exhaust air flow rate $[m^3/s]$	W: Heat generation rate of heating element [W]	H_b : Height of one block [m]
				V_{in} : Inlet air flow flom of wall down flow $[m^3/s]$	$V_c\ :$ Vertical flow rate between room blocks $[{\rm m^3/s}]$	h: Height above the floor [m]	B_p : Circumferential length of plume[m]
		V_m : Mixed wall down flow $[m^3/s]$	T : Room block temperature [°C]	h_o : Distance to virtual point heat source from floor [m]	$C_b~$: Heat transfer coefficient between blocks [W/($\mathrm{m}^2\!\cdot\!\mathrm{K})]$		
V_{out} : Outlet air flow to wall down flow $[m^3/s]$	T_p : Plume temperature [°C]	B : Circumferential length of heating element [m]	$C_{bp}~$: Heat transfer coefficient around plume $[\mathrm{W/}(\mathrm{m^2}{\boldsymbol{\cdot}}\mathrm{K})]$				
V Vertical flow rate of mixedflow $[m^3/s]$	T : Temperature of wall down flow [°C]	C a ; Volumetric specific heat of air $[1/(m^3 \cdot K)]$					

い。また、3領域条件のat upperに着目するとどの条件 でも $a_{t \ lower}$ 、 $a_{t \ middle}$ に比べかなり大きな数値が得られ ており、温度分布自体は良く再現できたとしても乱流 熱拡散係数としては不自然な大きな値と考え、3 領域 条件は物理モデルとしては適切とは言い難い手法と判 断した。以上の検討より、予測精度と物理モデルとし ての妥当性・簡便性の観点から、今回対象とした程度 の天井高でも2領域条件で乱流熱拡散係数を与える手 法は妥当と言える。

5. まとめ

本報では天井高 5.4 mの IJV 方式の室を対象として ブロックモデルの適切な乱流熱拡散係数の与え方を検 討した。室を3領域に分割して乱流熱拡散係数を与え る手法と比較して、2領域に分割する手法は精度の大 きな低下もなく、簡便性の観点からもより妥当な手法 であることを示した。

[参考文献]-

- 1) T. Karamipanah, H.B. Awbi : Theoretical and experimental investigation of impinging jet ventilation and comparison with wall displacement ventilation, Building and Environment, Vol.37, pp.1329-1342, 2002
- 2) 小林知広, 杉田雄希, 梅宮典子: 床面衝突噴流を用いた準置換換 気方式に関する研究 - CFD を用いた数値実験に基づくブロック モデルによる室内鉛直温度分布の予測-,日本建築学会環境系論 文集, 第81巻, 第730号, pp.1117-1125, 2016.12
- 3) 杉田雄希,小林知広,梅宮典子:床面衝突噴流を用いた準置換換 気方式に関する研究(その9)室内熱負荷配置条件が乱流熱拡散 係数に及ぼす影響,日本建築学会近畿支部研究報告集,第57号・ 環境系,2017.6 (投稿中)
- 4) 戸河里敏, 荒井良延, 三浦克弘: 大空間における上下温度分布の 予測モデル - 大空間の空調・熱環境計画手法の研究(その1) -, 日本建築学会計画系論文報告集, 第 427 号, pp.9-19, 1991
- 5) H. Skisted : DISPLACEMENT VENTILATION, Reserch Studies Press Ltd., 1994

*1大阪市立大学工学部建築学科 学部生

- *2大阪市立大学大学院工学研究科都市系専攻 講師 博士 (工学)
- *3大阪市立大学大学院工学研究科都市系専攻 教授 博士(工学)

*4大阪市立大学大学院工学研究科都市系専攻 前期博士課程

Professor, Department of Urban Eng., Graduate School of Eng., Osaka City University, Dr.Eng Graduate Student, Department of Urban Eng., Graduate School of Eng., Osaka City University

Lecturer, Department of Urban Eng., Graduate School of Eng., Osaka City University, Dr.Eng.